RoHS Recast Compliant ## **SATA-Disk Module 5A-M** SDM5A-M 7P/90D MP2 Product Specifications (Toshiba 15nm) December 19, 2017 Version 1.3 **Apacer Technology Inc.** 1F, No.32, Zhongcheng Rd., Tucheng Dist., New Taipei City, Taiwan, R.O.C Tel: +886-2-2267-8000 Fax: +886-2-2267-2261 www.apacer.com ### **Features:** #### Standard Serial ATA Interface - Serial ATA Revision 3.1 - SATA 6.0 Gbps interface - ATA-8 command set - Backward compatible with SATA 1.5/3.0 Gbps ### Capacity - 8, 16, 32, 64 GB #### Performance* Burst read/write: 600 MB/sec Sequential read: Up to 245 MB/sec Sequential write: Up to 75 MB/sec ### **Flash Management** - Built-in hardware ECC - Global Wear Leveling - Flash bad-block management - Flash Translation Layer: Page Mapping - S.M.A.R.T. - Power Failure Management - ATA Secure Erase ### NAND Flash Type: MLC MTBF: >1.000.000 hours #### **Endurance (in Terabytes Written: TBW)** - 8 GB: 11 TBW 16 GB: 22 TBW 32 GB: 39 TBW 64 GB: 48 TBW ### **Temperature Range** Operating: Standard: 0°C to 70°C Extended: -40°C to 85°C Storage: -40°C to 100°C ### **Supply Voltage** - 5.0 V ± 5% ### **Power Consumption*** Active mode: 205 mA - Idle mode: 80 mA ### **Connector Type** - 7-pin SATA signal connector - 15-pin SATA power connector ### **Form Factor** - SATA Disk Module: 7-pin/90 degree Middle Profile 2 - Dimensions: 52.25x24.00x15.20, unit: mm #### Shock & Vibration** Shock:1,500 G Vibration: 15 G ### Write Protect Switch (optional) ### **RoHS Recast Compliant** - Complies with 2011/65/EU Standard *Varies from capacities. The values for performances and power consumptions presented are typical and may vary depending on flash configurations or platform settings. The term idle refers to the standby state of the device. **Non-operating ## **Table of Contents** | 1. General Descriptions | 3 | |---------------------------------|----| | 2. Pin Assignments | 3 | | | | | 3. Product Specifications | 4 | | 3.1 Capacity | | | 4. Flash Management | 6 | | 4.1 Error Correction/Detection | | | 5. Software Interface | 8 | | 5.1 Command Set | 8 | | 6. Electrical Specifications | 10 | | 6.1 Operating Voltage | 10 | | 7. Physical Characteristics | 11 | | 7.1 Dimensions | | | 8. Product Ordering Information | 13 | | 8.1 Product Code Designations | 13 | ## 1. General Descriptions Apacer's SDM5A-M (SATA Disk Module 5A-M) is our next generation disk-on-module (DOM) series that offers elevated speed boost and higher error correction capabilities. Built with SATA 6.0 Gb/s interface, SDM5A-M delivers higher performance in data transfer than its previous SDM selections, reaching up to 245 MB/s in read and 75 MB/s in write. With its SATA interface compliance and compact size, this high-speed disk module defines an ideal balance of performance, capacities, reliability and cost. SDM5A-M comes in moderate capacities that are suitable to boot industrial applications and light operating systems for specific operations, while with some extra memory space for data storage. The architectural nature of SATA disk module provides higher resistance to external environmental influences and better flexibility for motherboard space. Regarding data reliability, SDM5A-M is built in with powerful ECC engine that can correct up to 40 bits per 1KB data. In addition, the controller unit of this DOM device supports wear-leveling, SMART and power failure management for data integrity. With its trustable reliability, performance and cost effectiveness, Apacer's SDM5A-M is definitely the ideal storage or cache solution for embedded and industrial computers, servers and thin clients. ## 2. Pin Assignments Table 2-1 Signal Segment | Pin | Туре | Description | |-----|------|--------------------------------| | S1 | GND | | | S2 | RxP | + Differential Receive Signal | | S3 | RxN | - Differential Receive Signal | | S4 | GND | | | S5 | TxN | - Differential Transmit Signal | | S6 | TxP | + Differential Transmit Signal | | S7 | GND | | Table 2-2 Power Segment | Pin | Signal/Description | |-----|--------------------| | P1 | VCC (5V) | | P2 | GND | ## 3. Product Specifications ### 3.1 Capacity Capacity specifications of SDM5A-M are available as shown in Table 3-1. It lists the specific capacity and the default numbers of heads, sectors and cylinders for each product line. Table 3-1 Capacity Specifications | Capacity | Total bytes* | Cylinders | Heads | Sectors | Max LBA | |----------|----------------|-----------|-------|---------|-------------| | 8 GB | 8,012,390,400 | 15,525 | 16 | 63 | 15,649,200 | | 16 GB | 16,013,942,784 | 16,383 | 16 | 63 | 31,277,232 | | 32 GB | 32,017,047,552 | 16,383 | 16 | 63 | 62,533,296 | | 64 GB | 64,023,257,088 | 16,383 | 16 | 63 | 125,045,424 | ^{*}Display of total bytes varies from file systems, which means not all of the bytes can be used for storage. LBA count addressed in the table above indicates total user storage capacity and will remain the same throughout the lifespan of the device. However, the total usable capacity of the SSD is most likely to be less than the total physical capacity because a small portion of the capacity is reserved for device maintenance usages. ### 3.2 Performance Performance of SDM5A-M is listed below in Table 3-2. Table 3-2 Performance Specifications | Capacity Performance | 8 GB | 16 GB | 32 GB | 64 GB | |--------------------------|------|-------|-------|-------| | Sequential Read* (MB/s) | 105 | 215 | 210 | 245 | | Sequential Write* (MB/s) | 24 | 48 | 42 | 75 | Note: Results may differ from various flash configurations or host system setting. ## 3.3 Environmental Specifications Environmental specifications of SDM5A-M product are shown in Table 3-3. Table 3-3 Environmental Specifications | Item | Specifications | |-------------------------|--| | Operating temp. | 0°C to 70°C (Standard); -40°C to 85°C (Extended) | | Non-operating temp. | -40°C to 100°C | | Operating vibration | 7.69 Grms, 20~2000 Hz/random (compliant with MIL-STD-810G) | | Non-operating vibration | 4.02 Grms, 15 ~ 2000 Hz/sine (compliant with MIL-STD-810G) | | Operating shock | 50(G), 11(ms), half-sine wave | | Non-operating shock | 1,500(G), 0.5(ms), half-sine wave | ^{**}Notes: 1 GB = 1,000,000,000 bytes; 1 sector = 512 bytes. ^{*}Sequential performance is based on CrystalDiskMark 5.2.1 with file size 1,000MB. ## 3.4 Mean Time Between Failures (MTBF) Mean Time Between Failures (MTBF) is predicted based on reliability data for the individual components in SDM5A-M. The prediction result for SDM5A-M is more than 1,000,000 hours. Note: The MTBF is predicated and calculated based on "Telcordia Technologies Special Report, SR-332, Issue 2" method. ### 3.5 Certification and Compliance SDM5A-M complies with the following standards: - CE - FCC - RoHS Recast - MIL-STD-810 ### 3.6 Endurance The endurance of a storage device is predicted by TeraBytes Written based on several factors related to usage, such as the amount of data written into the drive, block management conditions, and daily workload for the drive. Thus, key factors, such as Write Amplifications and the number of P/E cycles, can influence the lifespan of the drive. **Table 3-4** Endurance Specifications | Capacity | TeraBytes Written | |----------|-------------------| | 8 GB | 11 | | 16 GB | 22 | | 32 GB | 39 | | 64 GB | 48 | ### Note: - The measurement assumes the data written to the SSD for test is under a typical and constant rate. - The measurement follows the standard metric: 1 TB (Terabyte) = 1,000 GB. - This estimation complies with JEDEC JESD-219, enterprise endurance workload of random data with payload size distribution. ## 4. Flash Management ### 4.1 Error Correction/Detection SDM5A-M implements a hardware ECC scheme, based on the BCH algorithm. It can detect and correct up to 40 bits error in 1K bytes. ### 4.2 Bad Block Management Current production technology is unable to guarantee total reliability of NAND flash memory array. When a flash memory device leaves factory, it comes with a minimal number of initial bad blocks during production or out-of-factory as there is no currently known technology that produce flash chips free of bad blocks. In addition, bad blocks may develop during program/erase cycles. When host performs program/erase command on a block, bad block may appear in Status Register. Since bad blocks are inevitable, the solution is to keep them in control. Apacer flash devices are programmed with ECC, page mapping technique and S.M.A.R.T to reduce invalidity or error. Once bad blocks are detected, data in those blocks will be transferred to free blocks and error will be corrected by designated algorithms. ### 4.3 Global Wear Leveling Flash memory devices differ from Hard Disk Drives (HDDs) in terms of how blocks are utilized. For HDDs, when a change is made to stored data, like erase or update, the controller mechanism on HDDs will perform overwrites on blocks. Unlike HDDs, flash blocks cannot be overwritten and each P/E cycle wears down the lifespan of blocks gradually. Repeatedly program/erase cycles performed on the same memory cells will eventually cause some blocks to age faster than others. This would bring flash storages to their end of service term sooner. Global wear leveling is an important mechanism that levels out the wearing of all blocks so that the wearing-down of all blocks can be almost evenly distributed. This will increase the lifespan of SSDs. ## 4.4 Flash Translation Layer – Page Mapping Page mapping is an advanced flash management technology whose essence lies in the ability to gather data, distribute the data into flash pages automatically, and then schedule the data to be evenly written. Page-level mapping uses one page as the unit of mapping. The most important characteristic is that each logical page can be mapped to any physical page on the flash memory device. This mapping algorithm allows different sizes of data to be written to a block as if the data is written to a data pool and it does not need to take extra operations to process a write command. Thus, page mapping is adopted to increase random access speed and improve SSD lifespan, reduce block erase frequency, and achieve optimized performance and lifespan. ### 4.5 ATA Secure Erase ATA Secure Erase is an ATA disk purging command currently embedded in most of the storage drives. Defined in ATA specifications, (ATA) Secure Erase is part of Security Feature Set that allows storage drives to erase all user data areas. The erase process usually runs on the firmware level as most of the ATA-based storage media currently in the market are built-in with this command. ATA Secure Erase can securely wipe out the user data in the drive and protects it from malicious attack. ## Apacer ## **4.6 Power Failure Management** Power Failure Management plays a crucial role when experiencing unstable power supply. Power disruption may occur when users are storing data into the SSD. In this urgent situation, the controller would run multiple write-to-flash cycles to store the metadata for later block rebuilding. This urgent operation requires about several milliseconds to get it done. At the next power up, the firmware will perform a status tracking to retrieve the mapping table and resume previously programmed NAND blocks to check if there is any incompleteness of transmission. ### 5. Software Interface ### 5.1 Command Set Table 5-1 Command Set | Code | Command | Code | Command | |------|------------------------------|------|------------------------| | E5h | Check Power Mode | F3h | Security Erase Prepare | | 06h | Data Set Management | F4h | Security Erase Unit | | 90h | Execute Device Diagnostic | F5h | Security Freeze Lock | | E7h | Flush Cache | F1h | Security Set Password | | EAh | Flush Cache EXT | F2h | Security Unlock | | ECh | Identify Device | 70h | Seek | | E3h | Idle | EFh | Set Features | | E1h | Idle Immediate | C6h | Set Multiple Mode | | 91h | Initialize Device Parameters | E6h | Sleep | | C8h | Read DMA | B0h | SMART | | 25h | Read DMA EXT | E2h | Standby | | C4h | Read Multiple | E0h | Standby Immediate | | 29h | Read Multiple EXT | CAh | Write DMA | | 20h | Read Sector | 35h | Write DMA EXT | | 24h | Read Sector EXT | C5h | Write Multiple | | 40h | Read Verify Sectors | 39h | Write Multiple EXT | | 42h | Read Verify Sectors EXT | 30h | Write Sector | | 10h | Recalibrate | 34h | Write Sector EXT | | F6h | Security Disable Password | | | ### 5.2 S.M.A.R.T. S.M.A.R.T. is an abbreviation for Self-Monitoring, Analysis and Reporting Technology, a self-monitoring system that provides indicators of drive health as well as potential disk problems. It serves as a warning for users from unscheduled downtime by monitoring and displaying critical drive information. Ideally, this should allow taking proactive actions to prevent drive failure and make use of S.M.A.R.T. information for future product development reference. Apacer devices use the standard SMART command B0h to read data out from the drive to activate our S.M.A.R.T. feature that complies with the ATA/ATAPI specifications. S.M.A.R.T. Attribute IDs shall include initial bad block count, total later bad block count, maximum erase count, average erase count, power on hours and power cycle. When the S.M.A.R.T. Utility running on the host, it analyzes and reports the disk status to the host before the device reaches in critical condition. Note: Attribute IDs may vary from product models due to various solution design and supporting capabilities. Apacer memory products come with S.M.A.R.T. commands and subcommands for users to obtain information of drive status and to predict potential drive failures. Users can take advantage of the following commands/subcommands to monitor the health of the drive. | Code | SMART Subcommand | |------|-----------------------------------| | D0h | READ DATA | | D1h | READ ATTRIBUTE THRESHOLDS | | D2h | Enable/Disable Attribute Autosave | | D4h | Execute Off-line Immediate | | D5h | Read Log (optional) | | D6h | Write Log (optional) | | D8h | Enable Operations | | D9h | Disable operations | | DAh | Return Status | ### **General SMART attribute structure** | Byte | Description | |-------|-------------| | 0 | ID (Hex) | | 1 – 2 | Status flag | | 3 | Value | | 4 | Worst | | 5*-11 | Raw Data | *Byte 5: LSB ### **SMART** attribute ID list | ID (Hex) | Attribute Name | |------------|------------------------------------| | 9 (0x09) | Power-on hours | | 12 (0x0C) | Power cycle count | | 163 (0xA3) | Max. erase count | | 164 (0xA4) | Avg. erase count | | 166 (0xA6) | Total later bad block count | | 167 (0xA7) | SSD Protect Mode (vendor specific) | | 168 (0xA8) | SATA PHY Error Count | | 175 (0xAF) | Bad Cluster Table Count | | 192 (0xC0) | Unexpected Power Loss Count | | 194 (0xC2) | Temperature | | 241 (0xF1) | Total sectors of write | ## **6. Electrical Specifications** ### **6.1 Operating Voltage** Table 6-1 lists the supply voltage for SDM5A-M. **Caution: Absolute Maximum Stress Ratings –** Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability. Table 6-1 Operating Range | Item | Range | |----------------|----------------------| | Supply Voltage | 5V ± 5% (4.75-5.25V) | ## **6.2 Power Consumption** Table 6-2 lists the power consumption for SDM5A-M. Table 6-2 Power Consumption | Capacity | 8 GB | 16 GB | 32 GB | 64 GB | |-------------|------|-------|-------|-------| | Active (mA) | 155 | 175 | 175 | 205 | | Idle (mA) | 80 | 80 | 80 | 80 | Note: ^{*}All values are typical and may vary depending on flash configurations or host system settings. ^{**}Active power is an average power measurement performed using CrystalDiskMark with 128KB sequential read/write transfers. # 7. Physical Characteristics ## 7.1 Dimensions Unit: mm Tolerance: ± 0.25 ## 7.2 Write Protect Switch (optional) Apacer implements the Virtual Write scheme that allows write commands to go through the flash controller and data temporarily stored, but no data has been actually written into the flash. Once the system is reset and rebooted, the temporarily stored data will be lost and nowhere to be found in the system. Since the Virtual Write scheme runs at device level, it requires no software or driver installation and is independent from the host OS. ## **8. Product Ordering Information** ## **8.1 Product Code Designations** ### **8.2 Valid Combinations** ### **8.2.1 Without Write Protect** | Capacity | Standard Temperature | Extended Temperature | | |----------|----------------------|----------------------|--| | 8GB | APSDM008GQ2AN-PTM1 | APSDM008GQ2AN-PTM1W | | | 16GB | APSDM016GQ2AN-PTM1 | APSDM016GQ2AN-PTM1W | | | 32GB | APSDM032GQ2AN-PTM1 | APSDM032GQ2AN-PTM1W | | | 64GB | APSDM064GQ2AN-PTM1 | APSDM064GQ2AN-PTM1W | | ### **8.2.2 With Write Protect** | Capacity | Standard Temperature | Extended Temperature | | |----------|----------------------|----------------------|--| | 8GB | APSDM008GQ2WN-PTM1 | APSDM008GQ2WN-PTM1W | | | 16GB | APSDM016GQ2WN-PTM1 | APSDM016GQ2WN-PTM1W | | | 32GB | APSDM032GQ2WN-PTM1 | APSDM032GQ2WN-PTM1W | | | 64GB | APSDM064GQ2WN-PTM1 | APSDM064GQ2WN-PTM1W | | #### Note: - 1. The P/Ns are for models with power cable. However, for models without power cable, P/Ns vary depending on the type of cable-less solution: - For 7+2 cable-less solution, an additional digit "C" will be added at the end of the P/N. - 2. Valid combinations are those products in mass production or will be in mass production. Consult your Apacer sales representative to confirm availability of valid combinations and to determine availability of new combinations. # Apacer # **Revision History** | Revision | Description | Date | |----------|--|------------| | 1.0 | Official release | 10/18/2016 | | 1.1 | Added valid combinations with Write Protect support | 11/24/2016 | | 1.2 | Added Flash Translation Layer: Page Mapping to Flash Management on Features page | 7/20/2017 | | 1.3 | - Added 3.6 Endurance - Updated product ordering information | 12/19/2017 | ### **Global Presence** ### **Taiwan (Headquarters)** Apacer Technology Inc. 1F., No.32, Zhongcheng Rd., Tucheng Dist., New Taipei City 236, Taiwan R.O.C. Tel: 886-2-2267-8000 Fax: 886-2-2267-2261 amtsales@apacer.com ### Japan **Apacer Technology Corp.** 5F, Matsura Bldg., Shiba, Minato-Ku Tokyo, 105-0014, Japan Tel: 81-3-5419-2668 Fax: 81-3-5419-0018 ipservices@apacer.com #### China Apacer Electronic (Shanghai) Co., Ltd Room D, 22/FL, No.2, Lane 600, JieyunPlaza, Tianshan RD, Shanghai, 200051, China Tel: 86-21-6228-9939 Fax: 86-21-6228-9936 sales@apacer.com.cn #### U.S.A. Apacer Memory America, Inc. 46732 Lakeview Blvd., Fremont, CA 94538 Tel: 1-408-518-8699 Fax: 1-510-249-9551 sa@apacerus.com #### Europe Apacer Technology B.V. Science Park Eindhoven 5051 5692 EB Son, The Netherlands Tel: 31-40-267-0000 Fax: 31-40-290-0686 sales@apacer.nl #### India Apacer Technologies Pvt Ltd, Unit No.201, "Brigade Corner", 7th Block Jayanagar, Yediyur Circle, Bangalore - 560082, India Tel: 91-80-4152-9061 Fax: 91-80-4170-0215 sales india@apacer.com