

RoHS Recast Compliant

Industrial MicroSD

MicroSDHC R1 Product Specifications

October 16, 2020 Version 1.9

Apacer Technology Inc.

1F, No.32, Zhongcheng Rd., Tucheng Dist., New Taipei City, Taiwan, R.O.C Tel: +886-2-2267-8000 Fax: +886-2-2267-2261 www.apacer.com

Specifications Overview:

- Fully Compatible with SD Card Specifications 3.0, 2.0 and 1.1
 - Part 1, Physical Layer Specification, Ver 3.00 Final
 - Part 2, File System Specification, Ver 3.00
 - Part 3, Security Specification, Ver 3.00 Final
- Capacity
 - SD 2.0: 1, 2 GB
 - SD 3.0: 4, 8 GB
- Performance*
 - Sequential read: Up to 34 MB/sec
 - Sequential write: Up to 28 MB/sec
- Flash Management
 - Built-in advanced ECC algorithm
 - Global Wear Leveling
 - Flash bad-block management
 - Power Management
 - S.M.A.R.T.
 - Page Mapping
 - Power Failure Management
 - SMART Read Refresh[™]
- SD-Protocol Compatible
- Supports SD SPI Mode
- NAND Flash Type: SLC

- Temperature Range
 - Operating: -40°C to 85°C
 - Storage: -40°C to 85°C
- Operating Voltage: 2.7V ~ 3.6V
- Power Consumption*
 - Operating: 115 mA
 - Standby: 265 µA
- Standard Interface
 - 8-pin SD interface
- Bus Speed Mode: Supports Class 6 and Class 10 with UHS-I**
 - DS: Default Speed up to 25MHz 3.3V signaling
 - HS: High Speed up to 50MHz 3.3V signaling
 - SDR12: SDR up to 25MHz 1.8V signaling
 - SDR25: SDR up to 50MHz 1.8V signaling
 - SDR50: SDR up to 100MHz 1.8V signaling
 - SDR104: SDR up to 208MHz 1.8V signaling

1

- DDR50: DDR up to 50MHz 1.8V signaling
- Physical Dimensions
 - 15mm (L) x 11mm (W) x 1mm (H)
- RoHS Recast Compliant (2011/65/EU)

*Performance values presented here are typical and measured based on USB 3.0 card reader. The results may vary depending on settings and platforms.

**Class 6 is only supported on 1GB and 2GB. Timing in 1.8V signaling is different from that of 3.3V signaling. Operation mode selection command is complaint with SD 3.0, referring to SDA's Part 1, Physical Layer Specification, Ver 3.01 (Section 3.9).

Table of Contents

1. General Descriptions	4
1.1 Product Functional Block	4
1.2 Flash Management	5
1.2.1 Bad Block Management	5
1.2.2 ECC Algorithms	5
1.2.3 Power Management	5
1.2.4 S.M.A.R.T.	5
1.2.5 Global Wear Leveling	5
1.2.6 Page Mapping	
1.2.7 Power Failure Management	
1.2.8 SMART Read Refresh [™]	7
2. Product Specifications	8
2.1 Card Architecture	8
2.2 Pin Assignment	8
2.3 Capacity Specifications	9
2.4 Performance Specifications	9
2.5 Electrical Specifications	9
3. Physical Characteristics	10
- 3.1 Physical Dimensions	
3.2 Durability Specifications	
4. AC Characteristics	40
4.1 MicroSD Interface Timing (Default) 4.2 MicroSD Interface Timing (High Speed Mode)	
4.3 MicroSD Interface Timing (SDR12, SDR25, SDR50 and SDR104 Modes)	
4.3.1 Clock Timing 4.3.2 Card Input Timing	
4.3.3 Card Output Timing of Fixed Data Window (SDR12, SDR25 and SDR50)	
4.3.4 Output Timing of Variable Window (SDR104)	
4.3.5 SD Interface Timing (DDR50 Mode)	
4.3.6 Bus Timings – Parameters Values (DDR50 Mode)	
· · · · ·	
5. Product Ordering Information	20
5.1 Product Code Designations	

1. General Descriptions

As the demand of reliable and high-performance data storage in a small form factor increases, Apacer's MicroSD card is designed specifically for multiple applications by offering high endurance, reliability, and agility, where extreme flexibility, endurance, data integrity, and exceptionally transmission are required.

The MicroSD card fully complies with SD Card Association standard. The Command List is compatible with [Part 1 Physical Layer Specification Ver3.0 Final] definitions, while the Card Capacity of Non-secure Area, Secure Area supports [Part 3 Security Specification Ver3.0 Final] Specifications. The card allows selection of either SD or SPI mode for compatibility in data communication.

The card also comes with endurance features for data error detection and correction.

1.1 Product Functional Block

The MicroSD contains a card controller and a memory core for the SD standard interface.

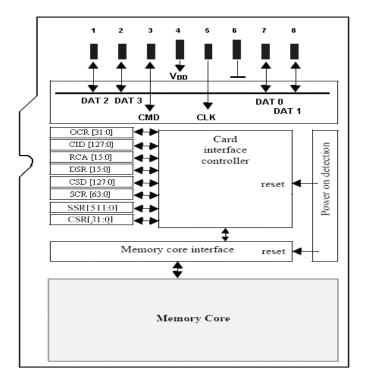


Figure 1-1 Functional Block Diagram

1.2 Flash Management

1.2.1 Bad Block Management

Bad blocks are blocks that include one or more invalid bits, and their reliability is not guaranteed. Blocks that are identified and marked as bad by the manufacturer are referred to as "Initial Bad Blocks". Bad blocks that are developed during the lifespan of the flash are named "Later Bad Blocks". Apacer implements an efficient bad block management algorithm to detect the factory-produced bad blocks and manages any bad blocks that appear with use. This practice further prevents data being stored into bad blocks and improves the data reliability.

1.2.2 ECC Algorithms

Flash memory cells will deteriorate with use, which might generate random bit errors in the stored data. Thus, the MicroSD card applies the BCH ECC Algorithm, which can detect and correct errors occur during read process, ensure data been read correctly, as well as protect data from corruption. The MicroSD controller can detect and correct up to 43 bits error in 1K bytes.

1.2.3 Power Management

A power saving feature of the MicroSD is automatic entrance and exit from sleep mode. Upon completion of an operation, the SD will enter the sleep mode to conserve power if no further commands are received within X seconds, where X is programmable by software. The master does not have to take any action for this to occur. The SD is in sleep mode except when the host is accessing it, thus conserving power.

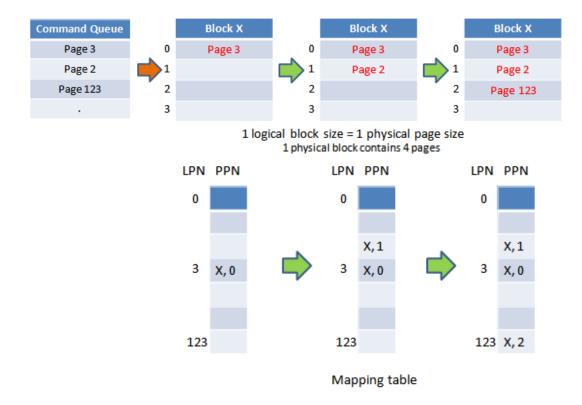
Any command issued by the master to the MicroSD will cause it to exit sleep mode and response to the master.

1.2.4 S.M.A.R.T.

S.M.A.R.T. (SMART), an acronym stands for Self-Monitoring, Analysis and Reporting Technology, is an open standard allowing an individual disk drive in the ATA/IDE or SCSI interface to automatically monitor its own health and report potential problems in order to prevent data loss. This failure warning technology provides predictions from unscheduled downtime by observing and storing critical drive performance and calibration parameters. Ideally, this should allow taking hands-on actions to keep from impending drive failure.

Failures are divided into two categories: those that can be predicted and those that cannot. Predictable failures occur gradually over time, and the decline in performance can be detected; on the other hand, unpredictable failures happen very sudden without any warning. These failures may be caused by power surges or related to electronic components. The purpose of the SMART implementation is to predict near-term failures of each individual disk drive and generate a warning to prevent unfortunate loss.

1.2.5 Global Wear Leveling


NAND Flash devices can only undergo a limited number of program/erase cycles, and in most cases, the flash media are not used evenly. If some area get updated more frequently than others, the lifetime of the device would be reduced significantly. Thus, Global Wear Leveling technique is applied to extend the lifespan of NAND Flash by evenly distributing writes and erase cycles across the media.

Apacer provides Global Wear Leveling algorithm, which can efficiently spread out the flash usage through the whole flash media area. Moreover, by implementing Global Wear Leveling algorithm, the life expectancy of the NAND Flash is greatly improved.

1.2.6 Page Mapping

Page-level mapping uses one page as the unit of mapping. The most important characteristic of pagelevel mapping is that each logical page can be mapped to any physical page on the flash memory device. This mapping algorithm allows different size of data to be written to a block as if the data is written to a data pool and it does not need to take extra operations to process a write command. The below example shows how page-level mapping performs a write command:

Host instructs three write commands: page 3, 2, and 123. The three pages are written into block X in sequence of command queue. Once all write commands are completed, the mapping table updates itself automatically.

Note: The example only shows the concept of how page-level mapping work and do not necessary happen in an actual case.

This fine-grained page-level mapping scheme makes better capability for handling random data, and increases overall performance and endurance significantly. However, page-level mapping requires SSDs to incorporate a larger RAM in order to maintain its mapping table.

1.2.7 Power Failure Management

Apacer industrial SD and MicroSD cards provide complete data protection mechanism during every abnormal power shutdown situation, such as power failure at programming data, updating system tables, erasing blocks, etc. Apacer Power-Loss Protection mechanism includes:

- Maintaining data correctness and increasing the reliability of the data stored in the NAND Flash memory.
- Protecting F/W table and the data written to flash from data loss in the event of power off.

7

1.2.8 SMART Read Refresh[™]

Apacer's SMART Read Refresh plays a proactive role in avoiding read disturb errors from occurring to ensure health status of all blocks of NAND flash. Developed for read-intensive applications in particular, SMART Read Refresh is employed to make sure that during read operations, when the read operation threshold is reached, the data is refreshed by re-writing it to a different block for subsequent use.

2. Product Specifications

2.1 Card Architecture

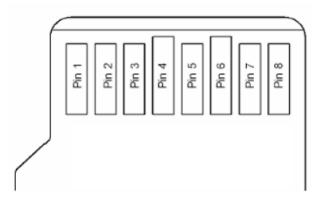


Figure 2-1 Card Architecture

2.2 Pin Assignment

	SD Mode		SPI Mode	
Pin Name		Description	Name	Description
1	DAT2	Data Line[Bit 2]	RSV	Reserved
2	CD/DAT3	Card Detect/Data Line[Bit 3]	CS	Chip Select (neg true)
3	CMD	Command/Response	DI	Data In
4	VDD	Supply Voltage	VDD	Supply Voltage
5	CLK	Clock	SCLK	Clock
6	VSS	Supply Voltage Ground	VSS	Supply Voltage Ground
7	DAT0	Data Line[Bit 0]	DO	Data Out
8	DAT1	Data Line[Bit 1]	RSV	Reserved

2.3 Capacity Specifications

The following table shows the specific capacity for the SD 6.1 card.

Table 2-2 Capacity Specifications

Capacity	Total bytes*
1 GB	969,605,120
2 GB	1,938,489,344
4 GB	3,875,504,128
8 GB	7,751,041,024

Note: Total bytes are viewed under Windows operating system and were measured by SD format too.

2.4 Performance Specifications

Performances of the SD 6.1 card are shown in the table below.

Table 2-3 Performance Specifications

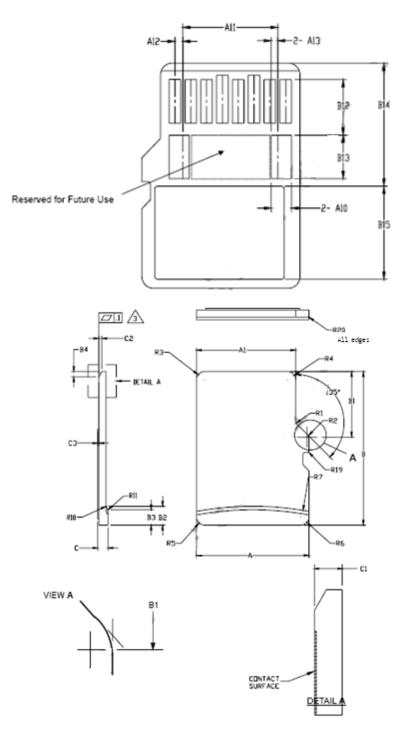
Capacity Performance	1 GB	2 GB	4 GB	8 GB
Sequential Read* (MB/s)	23	23	34	33
Sequential Write* (MB/s)	16	18	28	28

Note: Results may differ from various flash configurations or host system setting.

2.5 Electrical Specifications

Table 2-4 Operating Voltages

Symbol	Parameter	Min.	Max.	Unit
V _{DD}	Power Supply Voltage	2.7	3.6	V


Table 2-5 Power Consumption

Capacity Mode	1 GB	2 GB	4 GB	8 GB
Operating (mA)	110	110	110	115
Standby (µA)	160	160	260	265

Note: All values are typical and may vary depending on flash configurations or host system settings.

3. Physical Characteristics

3.1 Physical Dimensions

COMMON DIMENSIONS				
SYMBOL	MIN	NOM	MAX	NOTE
A	10.90	11.00	11.10	
A1	9.60	9.70	9.80	
A2		3.85		BASIC
- <u>A</u> 3	7.60	7.70	7.80	400
- AA	7.00	1.10	1.00	BASIC
A5	0.75	0.80	0.85	500
	0.10		8.50	
A7	0.90		0.00	
- ÃB	0.60	0.70	0.80	
A9	0.80			
A10	1.35	1.40	1.45	
A11	6.50	6.60	6.70	
A12	0.50	0.55	0.60	
A13	0.40	0.45	0.50	
B	14.90	15.00	15.10	
B1	6.30	6.40	6.50	
B1 B2	1.64	1.84	2.04	
B3	1.30	1.50	1.70	
B4	0.42	0.52	0.62	
B5	2.80	2.90	3.00	
B6	5.50			
87	0.20	0.30	0.40	
B8	1.00	1.10	1.20	
B9	1.00	-	9.00	
B10	7.80	7.90	8.00	
B11	1.10	1.20	1.30	
B12	3.60	3.70	3.80	
B13	2.80	2.90	3.00	
B14	8.20		0.00	
B15	0.20		6.20	
C	0.90	1.00	1.10	
Č1	0.60	0.70	0.80	
C2	0.20	0.30	0.40	
C3	0.00		0.15	
D1	1.00	•	•	
D2	1.00	•	•	
D3	1.00	•	-	
R1	0.20	0,40	0.60	
R2	0.20	0.40	0.60	
R3	0.70	0.80	0.90	
R4	0.70	0.80	0.90	
R5	0.70	0.80	0.90	
R6	0.70	0.80	0.90	
R7	29.50	30.00	30.50	
R10	-	0.20	•	
R11	•	0.20	- 0.30	
R17	0.10	0.20	0.30	
R18	0.20	0.40	0.60	
R19	0.05	•	0.20	
R20	0.02	•	0.15	

Notes:

 DIMENSIONING AND TOLERANCING PER ASME Y14.5W-1994.

2. DIMENSIONS ARE IN MILLIMETERS.

COPLANARITY IS ADDITIVE TO C1 MAX THICKNESS.

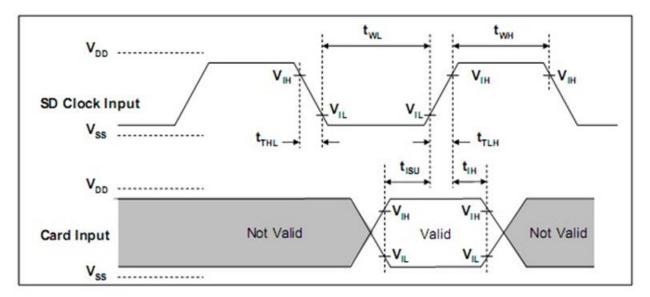
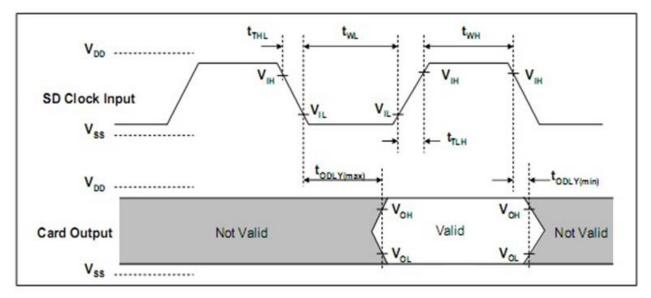

3.2 Durability Specifications

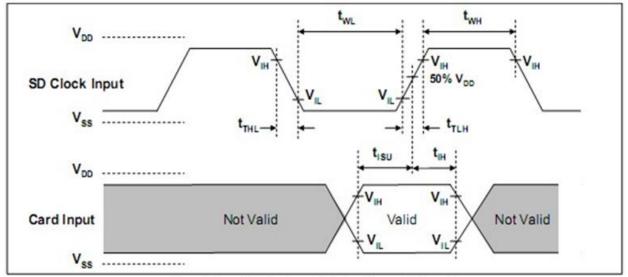
Table 3-1 Durability Specifications


Item	Specifications				
-	-40°C to 85°C (Operating)				
Temperature	-40°C to 85°C (Storage)				
Shock	1,500G, 0.5ms				
Vibration	20Hz~80Hz/1.52mm (frequency/displacement) 80Hz~2000Hz/20G (frequency/displacement) X, Y, Z axis/60mins each				
Drop	150cm free fall, 6 face of each				
Bending	\geq 10N, hold 1min/5times				
Torque	0.1N-m or 2.5deg, hold 5min/5times				
Salt Spray	Concentration: 3% NaCl at 35°C (storage for 24 hours)				
Waterproof	JIS IPX7 compliance Water temperature 25°C Water depth: the lowest point of unit is locating 1000mm below surface (storage for 30 mins)				
X-Ray Exposure	0.1 Gy of medium-energy radiation (70 KeV to 140 KeV, cumulative dose per year) to both sides of the card (storage for 30 mins)				
Durability	10,000 times mating cycle				
ESD	Pass				

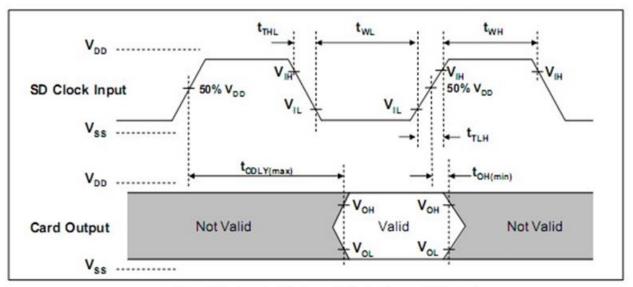
4. AC Characteristics

4.1 MicroSD Interface Timing (Default)

Card input Timing (Default Speed Card)-



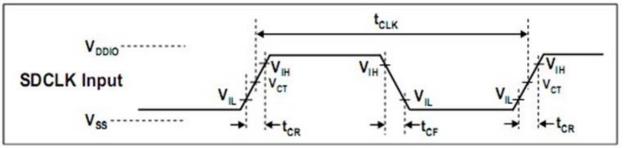
Card Output Timing (Default Speed Mode)+


SYMBOL	PARAMETER	MIN	MAX	UNIT	REMARK		
	Clock CLK (All values are referred to min(V _{III}) and max(V _{IL}))						
fрр	Clock frequency data transfer	0	25	MHz	C _{card} ≤ 10 pF (1 card)		
fod	Clock frequency identification	0 ⁽¹⁾ /100	400	KHz	C _{card} ≤ 10 pF (1 card)		
tw∟	Clock low time	10	-	ns	C _{card} ≤ 10 pF (1 card)		
twн	Clock high time	10	-	ns	C _{card} ≤ 10 pF (1 card)		
tтьн	Clock rise time	-	10	ns	C _{card} ≤ 10 pF (1 card)		
t_{THL}	Clock fall time	-	10	ns	C _{card} ≤ 10 pF (1 card)		
	Inputs CMD, DAT (Referenced	to CLK)		(1 0010)		
tisu	Input setup time	5	-	ns	C _{card} ≤ 10 pF (1 card)		
tтн	Input hold time	5	-	ns	C _{card} ≤ 10 pF (1 card)		
	Outputs CMD, DAT (Referenced to CLK)						
todly	Output delay time during data transfer mode	0	14	ns	C _L ≤ 40 pF (1 card)		
t _{OH}	Output hold time	0	50	ns	C _L ≤ 40 pF (1 card)		

(1)0Hz means to stop the clock. The given minimum frequency range is for cases that require the clock to be continued.

4.2 MicroSD Interface Timing (High Speed Mode)

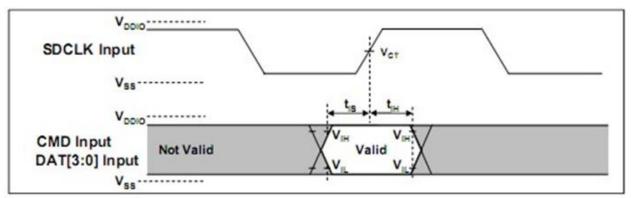
Card Input Timing (High Speed Card)-


Card Output Timing (High Speed Mode)

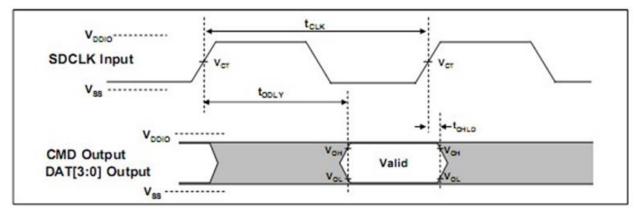
SYMBOL	PARAMETER	MIN	MAX	UNIT	REMARK				
	Clock CLK (All values are referred to min(V _{IH}) and max(V _{IL}))								
f _{PP}	Clock frequency data transfer	0	50	MHz	Ccard ≤ 10 pF (1 card)				
tw∟	Clock low time	7	-	ns	Ccard ≤ 10 pF (1 card)				
twн	Clock high time	7	-	ns	Ccard ≤ 10 pF (1 card)				
tтьн	Clock rise time	-	3	ns	Ccard ≤ 10 pF (1 card)				
t⊤н∟	Clock fall time	-	3	ns	Ccard ≤ 10 pF (1 card)				
	Inputs CMD, DAT (F	Referenced	I to CLK)						
tisu	Input setup time	6	-	ns	Ccard ≤ 10 pF (1 card)				
tтн	Input hold time	2	-	ns	Ccard ≤ 10 pF (1 card)				
	Outputs CMD, DAT (Reference	d to CLK)						
todly	Output delay time during data transfer made	-	14	ns	CL ≤ 40 pF (1 card)				
tон	Output hold time	2.5	-	ns	CL ≥ 15 pF (1 card)				
CL	Total system capacitance for each line*	-	40	pF	1 card				

*In order to satisfy severe timing, host shall run on only one card

4.3 MicroSD Interface Timing (SDR12, SDR25, SDR50 and SDR104 Modes)


4.3.1 Clock Timing

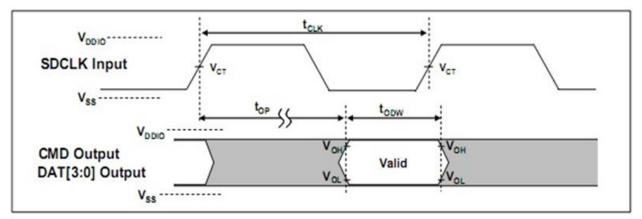
Clock Signal Timing-


SYMBOL	MIN	MAX	UNIT	REMARK
t _{CLK}	4.8	-	ns	208MHz (Max.), Between rising edge, V_{CT} = 0.975V
				tcr, tcr < 2.00ns (max.) at 208MHz, C _{CARD} =10pF
tcr, tcf -		0.2* tськ	ns	tcr, tcr < 2.00ns (max.) at 100MHz, Ccard=10pF
	-			The absolute maximum value of tcr, tcr is 10ns
				regardless of clock frequency.
Clock Duty	30	70	%	

4.3.2 Card Input Timing

Card Input Timing.

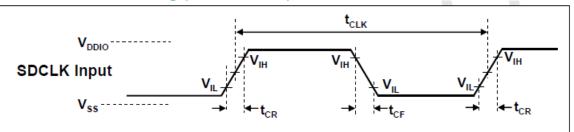
SYMBOL	MIN	MAX	UNIT	SDR104 MODE
t _{IS}	1.40	-	ns	$C_{CARD} = 10 pF, V_{CT} = 0.975 V$
t _{IH}	0.80	-	ns	$C_{CARD} = 5pF, V_{CT} = 0.975V$
SYMBOL	MIN	MAX	UNIT	SDR12, SDR25 and SDR50 MODES
t _{IS}	3.00	-	ns	$C_{CARD} = 10 pF, V_{CT} = 0.975 V$
t _{IH}	0.80	-	ns	$C_{CARD} = 5pF, V_{CT} = 0.975V$

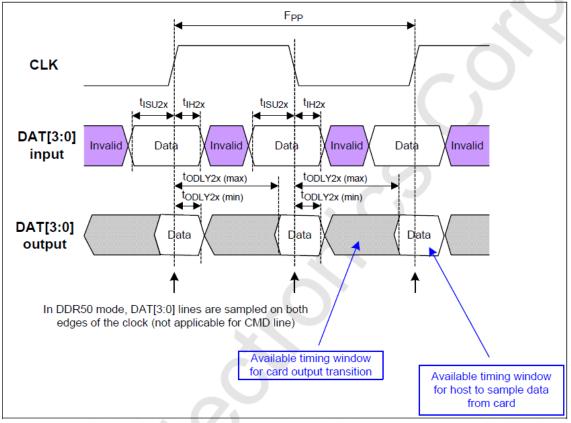


4.3.3 Card Output Timing of Fixed Data Window (SDR12, SDR25 and SDR50)

Output Timing of Fixed Date Window.

SYMBOL	MIN	MAX	UNIT	REMARK
t _{ODLY}	-	7.5	ns	$t_{CLK} \ge 10.0$ ns, CL=30pF, using driver Type B, for SDR50.
t _{ODLY}		14	ns	t_{CLK} ≥20.0ns, CL=40pF, using driver Type B, for SDR25 and SDR12.
t _{он}	1.5	-	ns	Hold time at the t_{ODLY} (min.). CL=15pF

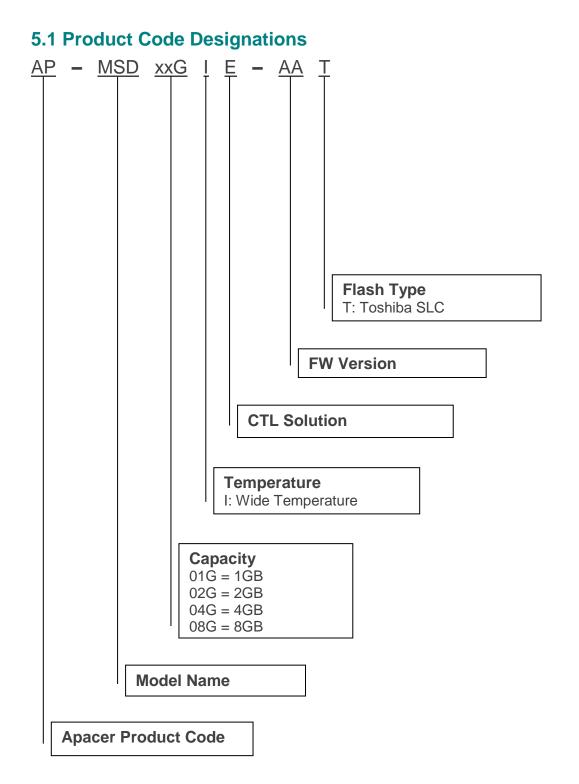

4.3.4 Output Timing of Variable Window (SDR104)


Output Timing of Variable Data Window-

SYMBOL	MIN	MAX	UNIT	REMARK
t _{OP}	-	2	UI	Card Output Phase
∆t _{OP}	-350	+1550	ps	Delay variation due to temperature change after tuning
t _{odw}	0.60	-	UI	t _{ODW} = 2.88ns at 208MHz

4.3.5 SD Interface Timing (DDR50 Mode)

Clock Signal Timing							
SYMBOL	MIN	MAX	UNIT	REMARK			
t _{CLK}	20	-	ns	50MHz (Max.), Between rising edge			
t _{CR} , t _{CF}	-	0.2* t _{CLK}	ns	t _{CR} , t _{CF} < 4.00ns (max.) at 50MHz, CCARD=10pF			
Clock Duty	45	55	%				



Timing Diagram DAT Inputs/Outputs Referenced to CLK in DDR50 Mode

Symbol	Parameters	Min	Max	Unit	Remark					
	Input CMD (referenced to CLK rising edge)									
tisu	Input set-up time	6	-	ns	C _{card} ≤ 10 pF (1 card)					
tıн	Input hold time	0.8	-	ns	C _{card} ≤ 10 pF (1 card)					
	Output C	MD (refe	renced to	CLK risir	ng edge)					
todly	Output Delay time during Data Transfer Mode	-	13.7	ns	C _L ≤30 pF (1 card)					
Тон	Output Hold time	1.5	-	ns	C∟≥15 pF (1 card)					
	Inputs DAT (re	eferenced	to CLK I	rising and	falling edges)					
t _{ISU2x}	Input set-up time	3	-	ns	C _{card} ≤ 10 pF (1 card)					
t _{IH2x}	Input hold time	0.8	-	ns	C _{card} ≤ 10 pF (1 card)					
Outputs DAT (referenced to CLK rising and falling edges)										
t _{ODLY2x}	Output Delay time during Data Transfer Mode	-	7.0	ns	C∟≤25 pF (1 card)					
T _{OH2x}	Output Hold time	1.5	-	ns	C∟≥15 pF (1 card)					

4.3.6 Bus Timings – Parameters Values (DDR50 Mode)

5. Product Ordering Information

5.2 Valid Combinations

Capacity	Part Number
1GB	AP-MSD01GIE-AAT
2GB	AP-MSD02GIE-AAT
4GB	AP-MSD04GIE-AAT
8GB	AP-MSD08GIE-AAT

Note: Valid combinations are those products in mass production or will be in mass production. Consult your Apacer sales representative to confirm availability of valid combinations and to determine availability of new combinations.

Revision History

Revision	Description	Date
1.0	Official release	12/22/2015
1.1	- Added S.M.A.R.T. chapter - Revised product ordering information	1/13/2016
1.2	Specified supported capacity for SD 2.0 and SD 3.0 respectively	1/18/2016
1.3	Removed S.M.A.R.T. chapter	2/1/2016
1.4	Added support for page mapping	6/7/2016
1.5	Added Power Failure Management to Features and General Description	10/3/2016
1.6	Removed "The data written at the exact moment power off will be lost, and the max data loss is 16 sectors." from 1.2.7 Power Failure Management	10/7/2016
1.7	Added bus speed mode support to Specifications Overview	8/25/2020
1.8	Updated 1.2.2 Powerful ECC Algorithms	9/16/2020
1.9	 Added SMART Read Refresh to Flash Management on Specifications Overview page Added 1.2.8 SMART Read Refresh 	10/16/2020

Global Presence

Taiwan (Headquarters)

Apacer Technology Inc. 1F., No.32, Zhongcheng Rd., Tucheng Dist., New Taipei City 236, Taiwan R.O.C. Tel: 886-2-2267-8000 Fax: 886-2-2267-2261 amtsales@apacer.com

Japan

Apacer Technology Corp. 6F, Daiyontamachi Bldg., 2-17-12, Shibaura, Minato-Ku, Tokyo, 108-0023, Japan Tel: 81-3-5419-2668 Fax: 81-3-5419-0018 jpservices@apacer.com

China

Apacer Electronic (Shanghai) Co., Ltd Room D, 22/FL, No.2, Lane 600, JieyunPlaza, Tianshan RD, Shanghai, 200051, China Tel: 86-21-6228-9939 Fax: 86-21-6228-9936

sales@apacer.com.cn

U.S.A. Apacer Memory America, Inc. 46732 Lakeview Blvd., Fremont, CA 94538 Tel: 1-408-518-8699 Fax: 1-510-249-9551 <u>sa@apacerus.com</u>

Europe

Apacer Technology B.V. Science Park Eindhoven 5051 5692 EB Son, The Netherlands Tel: 31-40-267-0000 Fax: 31-40-290-0686 sales@apacer.nl

India

Apacer Technologies Pvt Ltd, 1874, South End C Cross, 9th Block Jayanagar, Bangalore-560069, India Tel: 91-80-4152-9061/62 Fax: 91-80-4170-0215 sales india@apacer.com