RoHS Compliant Micro SDHC Card

SPI Mode Appendix

March 8th, 2013

Version 1.0

 Apacer Technology Inc.

 4th Fl., 75 Hsin Tai Wu Rd., Sec.1, Xizhi, New Taipei City, Taiwan 221

 Tel: +886-2-2698-2888
 Fax: +886-2-2698-2889

 www.apacer.com

Table of Contents

SPI Bus Timing Diagram2	
Command & Response2	
Host Command to Card Response – Card is ready2	
Host Command to Card Response – Card is busy2	
Card Response to Host Command3	
Data Read3	
Timing of Single Block Read Operation3	
Stop Transmission Timing of Multiple Block Read Operation	
Reading the CSD or CID Register4	
Data Write4	
Timing of Multiple Block Write Operation4	
Stop Transmission Timing of Multiple Block Write Operation5	
Timing Values5	
SPI Electrical Interface6	
SPI Bus Operation Conditions6	
Bus Timing6	

SPI Bus Timing Diagram


Before looking at the diagrams, please keep in mind that all timing diagrams are following the schematics and the abbreviations below.

Н	Signal is high (logical "1")
L	Signal is low (logical "0")
Х	Don't' care/ignore
Z	High impedance state (->=1)
*	Repeater
Busy	Busy token
Command	Command token
Response	Response token
Data block	Data token

Command & Response

Host Command to Card Response - Card is ready

The following timing diagram describes the basic command response (no data) SPI transaction.

Host Command to Card Response – Card is busy

The following timing diagram describes the command-response transaction with the R1b response (for example, SET_WRITE_PROT and ERASE). When the card is signaling busy, the host may de-select it (by raising the CS) at any time. The card will release the DataOut line one clock after the CS goes high. To check if the card is still busy, it needs to be re-selected by asserting (set to low) the CS signal. The card will resume busy signal (pulling DataOut low) one clock after the falling edge of CS.

CS	L	L	L	L	L	* *	* *	* 1	* * 1	* * *	*	* *	* *	* * *	* *	* * 1	* * *	* :	* *	* *	* * *	* *	* *	* *	* *	* *	* *	* *	* * *	* *	* *	* *	*	*	L	L	н	н	н	1
		_															_	1	-			_										-	+	_			- 		-	1
DataIN	н	н	н	Н	Н	Н	* *	* *	* * 1	* * *	* *	* *	* *	* * *	* *	* * :	* H	ł	Н	Н	Н		6	В	yte	s (Cor	nr	nar	nd		ŀ	1	Н	Н	Н	х	Х	Х	
																	<	- 1	NR	c -	.>																			
DataOut	н	н	н	н	н		1	or	2	Byte	es	Re	esp	on	se		Н	ł	н	Н	н	*	* *	* *	* *	* *	* *	* *	* * :	* *	* *	F	1	н	н	Н	н	z	z	

Card Response to Host Command

The following diagram describes timing between card response to new host command.

CS	L	L	L	L	L	* *	* * *	* *	* * *	* *	* 1	* *	* *	* *	* *	* * 1	* * *	* *	*	*	* *	* * * *	*	* *	* *	*	* *	* *	* '	* * 1	* *	* *	*	L	L	ŀ	1	Η	н
DatalN	н	н	н	н	н	н	* *	* *	* * 1	* *	* :	* *	* *	* *	* *	* * :	* H	F	1	1	н	(6 E	Byte	es	Сс	m	ma	ind	1	٦	н	н	н	н	>		x	x
																	<	- N	N _R	; -:	>																	•	-
DataOut	н	Н	н	н	н		1	or	21	3yte	s	Re	sp	on	se		н	F	1	ł	Н	* * *	*	* *	* *	*	* *	* *	* 1	* * 1	*	н	Н	н	н	F	1 2	z	z

Data Read

Timing of Single Block Read Operation

The following timing diagram describes all single-block read operations with the exception of SEND_CSD and SEND_CID commands.

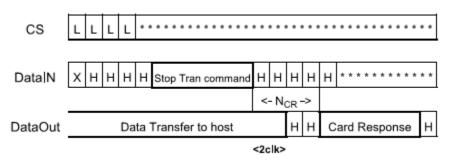
CS	Н	L	L	L	* *	***	* * *	***	* * *	* *	* *	* *	* *	* * * * * * * * *	* * :	₹ *	* *	* *	* * *	* * * *	L	L	L	НH	н	Н
		÷	N	cs-	ý																<-	N _E	->			
DataIN	x	Н	Н	Н	н	Read	l Co	mman	d H	Н	Н	Н	Н	* * * * * * * *	* * *	***	• * *	۰*	* * *	* * * *	н	Н	Н	хx	x	х
									<	- N	CR	->			<-	N	AC -	ý								
DataOut	z	Z	Н	Н	Н	н *	* * *	* * * *	* Н	Н	Н	Н	С	ard Response	н	н	Н	н	Data	1 Block	Н	Н	Н	ΗZ	zz	Z

Stop Transmission Timing of Multiple Block Read Operation

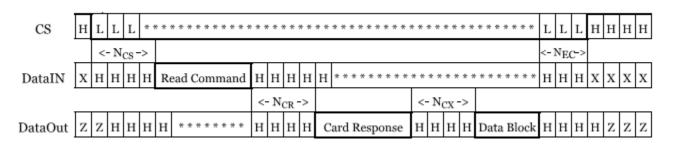
The following table describes Stop Transmission operation in case of Multiple Block Read.

Clock cycle between read data blocks are defined by NAC (not shown in the following diagram).

To avoid conflict between CMD12 response and next data block, timing of CMD12 should be controlled as follows.

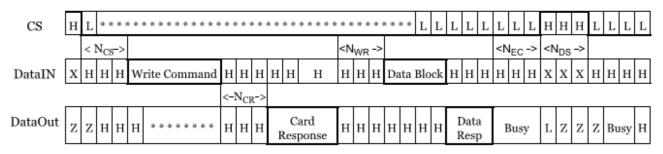

1. SPI host should issue CMD12 at the timing that end bit of CMD12 and end bit of data block is overlapped.

Micro SDHC SPI Mode Brief


2. If 1. is not possible, SPI host should wait to receive a token (Start Block Token or Data Error Token), and then issue CMD12 after one clock from the token.

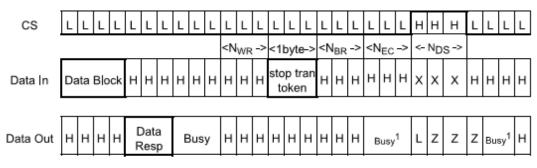
After the last block is read in case of 2., the host receives Data Error Token by out of range error. However, the data block before Data Error Token can be considered as valid if it is received successfully.

Reading the CSD or CID Register


The following timing diagram describes the SEND_CSD and SEND_CID command bus transactions. The timeout values for the response and the data block are N_{CR} and N_{CX} respectively. (Since the NAC is still unknown).

Data Write

Timing of Multiple Block Write Operation


The host may de-select a card (by raising the CS) at any time during the card busy period (refer to the given timing diagram). The card will release the DataOut line one clock after the CS goes high. To check if the card is still busy, it needs to be re-selected by asserting (set to low) the CS signal. The card will resume busy signal (pulling DataOut low) one clock after the falling edge of CS.

Stop Transmission Timing of Multiple Block Write Operation

The following figure describes stop transmission operation in multiple block write transfer. Error occurrence after the last data response token is indicated in the response of the next command.

⁽¹⁾ The Busy may appear within NBR clocks after the Stop Tran Token. If there is no Busy signal, the host may continue to the next command.

Timing Values

All timing values are defined in the following table. The host shall keep the clock running for at least N_{CR} clock cycles after receiving the card response. This restriction applies to both command and data response tokens.

Parameter	Min.	Max.	Unit
N _{CS}	0	-	8 clock cycles
N _{CR}	1	8	8 clock cycles
N _{RC}	1	-	8 clock cycles
N _{AC}	1	spec. in the CSD	8 clock cycles
N _{WR}	1	-	8 clock cycles
N _{EC}	0	-	8 clock cycles
N _{DS}	0	-	8 clock cycles
N _{BR}	0	1	8 clock cycles
N _{CX}	0	8	8 clock cycles

Notes for N_{AC} : the maximum read access time for a standard capacity SD memory card shall be calculated by host as follows

 N_{AC} (max) = 100 ((TAAC*fpp)+(100*NSAC));

fpp is the interface clock rate and TAAC & NSAC are given in the CSD (Chapter 5.3).

n the case of a high capacity SD memory card, a fixed value (100 ms) shall be used for the maximum read access time. Details of read, write and erase timeout are described in section 4.6.2 of SD card Physical Layer Specifications (ver. 3.00).

SPI Electrical Interface

The electrical interface is identical to SD mode with the exception of the programmable card output drivers option, which is not supported in SPI mode.

SPI Bus Operation Conditions

Bus operating conditions are identical to SD mode.

Bus Timing

Bus timing is identical to SD mode. The timing of the CS signal is the same as any other card input.

Revision History

Revision	Description	Date
1.0	Official release	03/08/2013

Global Presence

Taiwan (Headquarters)	Apacer Technology Inc. 4 th Fl., 75 Hsin Tai Wu Rd., Sec.1 Xizhi, New Taipei City Taiwan 221 R.O.C. Tel: +886-2-2698-2888 Fax: +886-2-2698-2889 amtsales@apacer.com
U.S.A.	Apacer Memory America, Inc. 386 Fairview Way, Suite102, Milpitas, CA 95035 Tel: 1-408-518-8699 Fax: 1-408-935-9611 <u>sa@apacerus.com</u>
Japan	Apacer Technology Corp. 5F, Matsura Bldg., Shiba, Minato-Ku Tokyo, 105-0014, Japan Tel: 81-3-5419-2668 Fax: 81-3-5419-0018 jpservices@apacer.com
Europe	Apacer Technology B.V. Science Park Eindhoven 5051 5692 EB Son, The Netherlands Tel: 31-40-267-0000 Fax: 31-40-267-0000#6199 sales@apacer.nl
China	Apacer Electronic (Shanghai) Co., Ltd 1301, No.251,Xiaomuqiao Road, Shanghai, 200032, China Tel: 86-21-5529-0222 Fax: 86-21-5206-6939 sales@apacer.com.cn
India	Apacer Technologies Pvt Ltd, # 535, 1st Floor, 8th cross, JP Nagar 3rd Phase, Bangalore – 560078, India Tel: 91-80-4152-9061 sales india@apacer.com